Bauman Moscow State Technical University •

Cubesat Technology Development – BMSTU Heritage

<u>Prof. Vera Mayorova,</u> <u>Dmitry Rachkin,</u>

Yareelo Nº1, Nº2 mission

The «Yareelo» mission

Two satellites Yareelo No1 and No2 with CubeSat1,5U size

Purposes:

- Scientific research of the Sun and solar-terrestrial relations;
- Space weather monitoring;

Objectives:

- To launch two 1,5U CubeSats in one P-POD;
- To register the solar activity and the radiation situation;
- To prove the possibility of a long-term nanosatellite group flight;

Space Weather

 Space weather has a lot of affects for technical and biological systems especially in Arctic region

Payload: X-ray Spectrophotometer

Functional area:

- Receiving non-stop and quick information about solar activity;
- Space weather forecasting;
- Registering of the solar flares (0.5-15 KeV).

Device technical features:

- Power consumption: 0,5 W (on the average);
- The accuracy of orientation
- to the Sun: cone with half angle 10° (sensor field of view);
- Data volume: 128 B/s

P.N. LEBEDEV PHYSICAL INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES

Spectrophotometer developed by Lebedev Physical institute of Russian Academy of Science

Payload: Gamma radiation and charged particle detector

Functional area:

- Study fast variations of electron flows in the gaps between radiation belts
- Study the particle flows and gamma radiation dynamics in low orbits depending on geomagnetic conditions in the range of 0.3-3 MeV.

Device technical features:

- Energy extraction: 0,1-2 MeV
- Input power: 0,8 W;
- No device orientation required;
- Daily data output : 300 KB

Yareelo Nº1 Yareelo Nº2 Transceiver Electrical power system Drag sail unit Reaction wheel attitude control system Onboard computer Gamma radiation X-ray and charged Spectrophotometer particle detector

Satellite electrical architecture

Power system buses						
Unregulated buses		2.8 – 5.5 V		Up to 5 A		
3.3 V		3.0 – 3.6 V		Up to 2 A		
5 V		4.5 – 5.5 V			Up to 3 A	
Data transmission interfaces						
CAN	I2C	UART		RS-485		SPI

Unified central microcontroller

Developed by students team

- Management of all on-board systems;
- Processing data from a GPS / GLONASS receiver, light and temperature sensors, payloads;
- Execution of onboard algorithms that process input data and provide control actions

Technical characteristics

Processor, frequency	ARM Cortex-M3, 8-120 MHz.			
OS	FreeRTOS			
MCU	<u>STM32F205xx</u>			
External RAM	512 KB (FRAM)			
MCU's ROM	512 KB (Flash)			
One-fault resistant				

<u>Reaction wheel attitude control system</u>

Maximum rotational velocity	10000 rpm
Kinematic momentum	0.32 · 10 ⁻³ m ² ·kg/s
Control torque	0.1 ·10 ⁻³ N ·m
Number of flywheels	4

Magnetic coil attitude control system

Number of windings	600
Resistance	157 Ω
Power	0.16 W
Magnetic moment	0.07 A*m ²
Number of coils	3

Developed by students team

≈ 2,7 W

12

Radio communication system

- Half-duplex radio communication between CubeSats and ground control complex based on the MCC BMSTU.
- Half-duplex radio communication between «Yareelo № 1» and «Yareelo № 2»
- Frequency range : 430 440 MHz
- Transmission speed to ground control complex: 9600 BPS - 38400 BPS
- Data exchange rate between satellites: at least 1200 BPS

Amplifier

Transceiver 1

Transceiver 2

Antenna connector

Yareelo Launch campaign

Launch from «Plesetsk» spaceport 14:20 28.09.2020

Launch done by Roscosmos as a part of "Universat" program – free launch program for Russian Universities

BMSTU Logo

First received signal

Signal was received by WebSDR service in South Africa 00:40 29.09.2020

First emotions

02:09 29.09.2020 moment of first signal decoding

Mission control center equipment

Antenna «Yagi–Uda» 15dB, LNA Mirage Kp-2 20dB, receiver RTL-SDR

Signal/noise: ~8 dB

Antenna «parabolic» 3,7m 22dB, LNA VHF Design 26dB, receiver LimeSDR

Signal/noise: ~15 dB

Power Supply System flight results

4,50 4,00 power from solar panels 4,00 3,50 energy consumption 3,50 3,00 3,00 2,50 >Power, W Voltage, 2,50 2,00 1,50 1,50 1,00 battery 1 1,00 battery 2 0,50 0,50 0,00 0,00 1 73 79 85 13 50 43 49 52 61 67 91 22 31 37 7 101316192225283134374043464952555861646770737679 Measurement # Measurement #

Batteries voltage

Power output, and energy consumption

- The power supply system is functioning correctly
- The voltage on the batteries dropped from 4.2 to 3.9 V for ~ 5000 charge/discharge cycles (1 year of flight). It corresponds to a degradation of about ~15% incapacity.
- There is no significant degradation of solar panels.
- There is no significant change in energy consumption.

On-board Computer flight results

There is a switch between two half-sets of main controllers about once a week. Presumably, this is caused by software flaws.

Temperature data from the onboard computer telemetry during the operation

Yareelo Nº3, Nº4 mission

Yareelo No3, No4 mission

Scientific goals:

- Measurements of Earth Radiation Budget: IR flux from Earth (albedo);
- Earth magnetic field measuring;
- Technological features and demonstration:
- Deployable carbon composite gravitation boom for magnetometer placing;
- Inflatable structure for satellite end of life utilization;

<u>Launch</u>

- Q2 2022 piggy back on Soyuz 2 rocket from
 Vostochny spaceport
 - (Roscosmos Universat program)

Two satellites Yareelo No3 and No4 with CubeSat 3U size

Yareelo No3, No4 mission

Two satellites Yareelo No3 and No4 mockups

	Yareelo 3	Yareelo 4	
Size	Cubesat 3U	Cubesat 3U	
Mass, kg	4	4	
Orbit	500-600km, SSO	500-600km, SSO	
Average power	1,6 W	1,6 W	
consumption			
Memory	8 GB	8 GB	
Transceiver	435-440 MHz, 2,4GHz	435-440 MHz, 2,4GHz	
frequency			
Payload	short-wave reflected and direct solar radiation detector, magnetometer	short-wave reflected and direct solar radiation detector	
Technological feature	deployable composite fibre boom	inflatable structure	
Launch	Q2 2022 piggy back on Soyuz 2 rocket from Vostochny spaceport	Q2 2022 piggy back on Soyuz 2 rocket from Vostochny spaceport	

MIRA

Payload specification

- Irradiance spectral measurements in 2 IR ranges (0,2-5 micron and 5-50 micron);
- Solar flux direction measurements -

Technical specification

- Power consumption: 0,5 W (on the average);
- Sensitivity 0,15 A/W -
- Data volume: 10 B/s

Developer

ISMIRAN Russian Academy of Science design

Arctica-M satellite (Roscosmos)

IR flux sensor (Thermoelectric)

The same payload "IKOR" have flight proven on Russian meteorological satellites : Meteor, Meteor-M, Electro-L, Arctica-M.

Example of Earth albedo map from Meteor (Rosgidromet)

Thank you for your attention! 🔸

bsail.ru

@baumansail ()